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FOREWORD 

(U)   The work reported herein was done at the request of the 
Aeronautical Systems Division (ASD), Air Force Systems Command 
(AFSC), for the General Dynamics Corporation,  Fort Worth, Texas, 
under Program Element 6340683F,  Program Area 139A. 

(U)   The results of tests presented were obtained by ARO, Inc. 
(a subsidiary of Sverdrup & Parcel and Associates,  Inc. >,  contract 
operator of the Arnold Engineering Development Center (AEDC), 
AFSC,  Arnold Air Force Station, Tennessee, under Contract 
AF40(600)-1200.   The test was conducted from August 7 through 
September 9,   1967, under ARO Project No.  PT0741, and the manu- 
script was submitted for publication on October 27,   1967. 

(U)   This report contains no classified information extracted 
from other classified documents. 

(U)   This technical report has been reviewed and is approved. 

# 
Richard W. Bradley Leonard T. Glaser 
Lt Col/ USAF Colonel,  USAF 
AF Representative, PWT Director of Test 
Directorate of Test 
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UNCLASSIFIED ABSTRACT 

(U)   Test results are presented for a 1/8-scale inlet model of a 
proposed AMSA air induction system at transonic and supersonic 
Mach numbers.    The effects of spike bleed pattern and inlet orienta- 
tion are presented.    Compressor face total-pressure recovery and 
flow distortion data are presented as a function of spike position, 
compressor-face mass-flow ratio,   spike boundary-layer bleed mass- 
flow ratio, angle of attack, angle of sideslip, and free-stream Mach 
number. 

Distribution limited to U. S^Goj^^^^cies 
only;  Test and Evaluatioi^rf^^P^^^ther 
requests for th^^^^S^^nust be referred 
to Cammandeja^^^Mautical Systems Div., 
Attn^^jj^^^Jright-Patterson AFB,  Ohio 
^5*M^?er TAB 73-2, 15 January, 1973. 
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SECTION I 
INTRODUCTION 

(U)   Tests were conducted in the Propulsion Wind Tunnel,  Tran- 
sonic (16T) and Supersonic (16S) to determine inlet performance 
characteristics of a 1/8-scale,  partial span model of the Advanced 
Manned Strategic Aircraft (AMSA) as proposed by the General 
Dynamics Corporation,  Fort Worth Division. 

(£)   The objectives of the tests were to evaluate some spike and 
cowl design variations and nacelle position effects (spacing and stagger) 
from both the isolated inlet and inlet-airplane standpoint. 

(t)   This report is concerned with the significant test results 
obtained for the basic cowl configuration at free-stream Mach numbers 
from 0. 85 to 2. 20.    The complete test data were forwarded to the test 
user and are available at AEDC. 

SECTION II 
APPARATUS 

2.1   TEST FACILITIES 

(U)   Tunnel 16T is a closed-circuit,  continuous flow wind tunnel 
capable of operating at Mach numbers from 0. 55 to 1. 60.    The tunnel 
can be operated over a stagnation pressure range from approximately 
160 to 4000 psfa and over a stagnation temperature range from 80 to 
160°F.    The tunnel specific humidity is controlled by removing tunnel 
air and supplying conditioned makeup air from an atmospheric dryer. 
Perforated walls in the test section allow continuous operation through 
the Mach number range with a minimum of wall interference. 

(U)   Tunnel 16S is a closed-circuit,  continuous flow wind tunnel 
that currently can be operated at Mach numbers from 1. 65 to 3. 10. 
The tunnel can be operated over a stagnation pressure range from 
approximately 100 to 1800 psfa and over a stagnation temperature 
range from 150 to 435°F.    The tunnel specific humidity is controlled 
by removing tunnel air and supplying conditioned makeup air from an 
atmospheric dryer. 

1 
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(U)   A more extensive description of each tunnel and its operating 
characteristics is contained in the Test Facilities Handbook. *■   A 
dimensioned sketch showing the model location and the sting support 
arrangement in both the Tunnel 16T and Tunnel 16S test sections is 
presented in Fig.  1 (Appendix I). 

2.2 TEST ARTICLE 

2.2.1 Wing-Fuselage Configuration 

($)  The model is a 1/8-scale general configuration of the basic 
AMSA airplane with the variable swept wings in the fully retracted 
position.    The wing tips, aft of the outboard inlet, cowl lip station, 
and horizontal stabilizer were removed to reduce aerodynamic loads 
on the wind tunnel model.   Dimensioned sketches of the model and the 
proposed full-scale AMSA are shown in Figs. 2 and 3, respectively. 
Photographs of the model installation in Tunnel 16T and Tunnel 16S 
are presented in Fig. 4. 

2.2.2 Inlet Configuration 

CfcJ   The air induction system for the proposed AMSA, as shown 
previously in Fig.  3,  consists of four external compression, axisym- 
metric double-cone inlets located beneath the wings and attached to 
the fuselage in dual-inlet arrangement.    Only the dual-inlet arrange- 
ment for the left side of the fuselage was installed on the model for 
the inlet-airplane phase of testing.    During the isolated inlet phase of 
testing, a mounting bracket was used to position both a single-inlet 
installation and a dual-inlet installation ahead of the sting.    For the 
dual-inlet installation,  separation distances of 0. 70, 0.84, and 1.00 
inlet diameters were investigated for a nonstaggered arrangement, 
and a separation distance of 0. 84 inlet diameters was investigated for 
a staggered arrangement.   In the staggered arrangement the outboard 
inlet was located 3. 5 inlet diameters downstream of the inboard inlet. 
Photographs of the isolated single-inlet installation and the isolated 
dual-inlet installation in both the nonstaggered and staggered arrange- 
ments are shown in Fig.  5. 

JTest Facilities Handbook (6th Edition).   "Propulsion Wind Tunnel 
Facility, Vol.  5. "   Arnold Engineering Development Center, November 
1966. 
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(e)   The inlets had 9. 5-deg cowl lip angles and inlet capture areas 
of 14. 875 in. 2.    They were geometrically similar, both internally and 
externally, to full-scale inlets from the cowl lip to the compressor- 
face station (nacelle station 14.375).    Compressor-face airflow control 
was obtained with a variable position plug valve downstream of the 
compressor face.    A sketch of the model nacelle, including tables of 
the cowl internal and external contours, is shown in Fig.  6. 

($   Five interchangeable double-cone inlet spikes were provided 
for each inlet.    The spikes had a 15-deg first-cone half angle with 
second-cone deflection angles of 10,  15, 20, 24, and 27 deg.   They 
were remotely translatable and, with the exception of the two spikes 
having second-cone deflection angles of 10 and 15 deg, had boundary- 
layer bleed holes on the second-cone surface.    Spike boundary-layer 
bleed pattern variations were accomplished by opening selected rows 
of bleed holes that were initially closed with a filling compound prior 
to testing.    Spike bleed flow was ducted internally through the spike 
centerbody and vented overboard.    Spike bleed control was obtained 
with a variable position plug valve located within the inlet actuator 
housing.    The two bleed patterns investigated during this test are 
shown in Fig.  7.    A sketch of the spike, including tables of the spike 
contours,  is shown in Fig.  8. 

2.3  INSTRUMENTATION 

(U)   Inlet performance in terms of total-pressure recovery and flow 
distortion were obtained from compressor-face total-pressure meas- 
urements; the orifice locations are shown in Fig.   9.    A dynamic trans- 
ducer was mounted in the duct wall at the compressor face of each inlet 
to monitor inlet stability.    Spike boundary-layer bleed and compressor- 
face mass flows were measured using calibrated metering plugs in 
conjunction with static and total-pressure measurements and free- 
stream total temperature measurements. 

(U)   Linear potentiometers were used to measure spike position, 
spike bleed plug position, and compressor-face flow plug position. 

SECTION III 

PROCEDURE 

3.1  GENERAL 

üß   The AMSA model was tested in Tunnel 16T at nominal free- 
stream Mach numbers of 0. 85 and 1. 20.    Free-stream total tempera- 
ture was maintained at 120°F.;: and free ^stream total pressure was 
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maintained at 1560 and 1200 psfa at Mach numbers 0. 85 and 1. 20* 
respectively.    In Tunnel 16S the model was tested at Mach numbers 
from 1. 75 to 2. 20.    Free-stream total temperature and total pressure 
were maintained at 200°F and 1100 psfa,  respectively,  through the 
Mach number range.    The model angle of attack and angle of sideslip 
were varied from 0 to +14 deg and from -8 to +8 deg,  respectively. 
The majority of the data taken with the model in a yawed attitude was 
taken at a nominal 6. 2-deg angle of attack. 

(?)   After tunnel free-stream total pressure and Mach number 
were established, the model was positioned to the desired angle of 
attack and/or angle of sideslip.    Steady-state pressure measurements 
were obtained by setting the desired spike position and spike bleed flow 
and setting selected compressor-face corrected weight flow by varying 
the primary duct plug position.    Except when determining the influence 
of spike bleed flow rate on inlet performance, the spike bleed flow was 
gradually increased until further increases in the spike bleed flow had 
no effect on inlet recovery.    Inlet stability was determined by monitor- 
ing the output of the dynamic pressure transducer mounted near the 
compressor face.    The initial indication of pressure fluctuation at the 
compressor-face station defined the inlet stability limit as presented 
in this report. 

3.2 ACCURACY OF MEASUREMENTS 

(U)   The probable errors associated with the various tunnel and 
model parameters are listed in Table I (Appendix II).    Since the data 
presented in this report were obtained from single sample measure- 
ments, the errors listed in Table I are the estimated uncertainties of 
the data based upon the accuracy of the instrumentation components 
and tunnel calibration data. 

SECTION IV 
RESULTS AND DISCUSSION 

(J>)   Inlet performance in terms of compressor-face total-pressure 
recovery and flow distortion is presented as a function of spike posi- 
tion,  compressor-face mass-flow ratio,  spike boundary-layer bleed 
mass-flow ratio, angle of attack, angle of sideslip, and free-stream 
Mach number. 

06CLASSffieO.UNCtASS.ret» 



AEDC-TR-67-252 

DECLASSIFIED / UNCLASSIFIED 

(B)   The predicted cruise attitude of the AMSA model,  as discussed 
in this report, is assumed to be +5 deg angle of attack and 0 deg angle 
of sideslip through the Mach number range from 0. 85 to 2. 20.   The 
total-pressure recovery and flow-distortion data presented for the 
inlet-airplane phase of testing are those values that were obtained for 
nominal compressor-face corrected "airflows of 260,  260,  220,   196, 
and 180 lbm/sec at Mach numbers of 0.85,  1.20,  1.75,  2.05,  and 
2. 20,  respectively.   During the isolated inlet phase of testing, the 
majority of data was obtained for a nominal compressor-face corrected 
airflow of 180 lbm/sec and at Mach number 2. 06, which was estimated 
as the local Mach number in the inlet flow field generated by the wing- 
fuselage combination at free-stream Mach number 2. 20. 

4.1   ISOLATED INLET TESTS 

4.1.1 Spike Bleed Flow 

(£)   The effect of spike boundary-layer bleed flow on inlet perform- 
ance at Mach number 2. 06 is presented in Figs.   10 through 12.   »The two 
spike bleed patterns investigated (bleed patterns 5 and 6) provided the 
same improvement in total-pressure recovery.    As shown in Fig.  10, 
recovery increased and distortion remained essentially unchanged as 
spike bleed flow was increased to the maximum obtainable value.   At 
the optimum spike position of X/R = 1.63, as determined from Fig.   11, 
maximum spike bleed flow increased maximum recovery approximately 
1 percent for a nominal corrected airflow of 180 lbm/sec.    The data 
presented in Fig.   11 also show that spike position at maximum recovery 
was less critical with spike bleed flow than without spike bleed flow. 
As can be interpreted from Fig.   12,  spike bleed flow was more effective 
at below-nominal values of corrected airflow.   The data also show that 
spike bleed flow decreased the inlet stability margin. 

(&)   Subsequent isolated inlet testing was done with spike bleed pat- 
tern 6 operating at maximum bleed flow rate.   The optimum spike posi- 
tion was established as X/R = 1. 63 for a corrected airflow of 180 lbm/sec 
at Mach number 2. 06. 

4.1.2 Mutual Interference Effects 

iff)   The mutual interference effects of the nonstaggered dual-inlet 
installations are shown in Fig.  13.    These data were obtained by setting 
a desired performance for one of the inlets and varying the mass flow of 
the other inlet.    For clarity the inlets-were identified, as they were 

DECLÄSSIF.EO / UNCLASSIFIED 



 |*Sh 

AEDC-TR-67-252 

DECLASSIFIED / UNCLASSIFIED 
commonly referred to when attached to the AMSA model,  as either the 
inboard inlet or the outboard inlet.    For the three inlet spacings investi- 
gated the inboard inlet performance was not degraded as the outboard 
inlet mass flow was throttled to the stability limit.    As the outboard 
inlet mass flow was throttled past the stability limit, the inboard inlet 
performance became slightly sensitive to inlet spacing only when the 
inboard inlet was set for a below-nominal corrected airflow of 
170 lbm/sec.    Flow distortion was unaffected at all test conditions. 

iji)   The interference effects of staggering the outboard inlet 
3. 5 inlet diameters downstream of the inboard inlet are shown in 
Fig.   14.    Varying the outboard mass flow had no effect on inboard in- 
let performance; however, varying the inboard mass flow caused out- 
board inlet recovery degradation of approximately 2 percent at nominal 
corrected airflow and approximately 4. 5 percent at a below-nominal 
corrected airflow of 165 lbm/sec.    Flow distortion was unaffected for 
the inboard inlet and was increased slightly for the outboard inlet when 
the inboard inlet mass flow was throttled past the stability limit. 

(§)   The dual-inlet configuration selected as the best compromise 
installation for the inlet-airplane phase of testing was the nonstaggered 
dual-inlet configuration having the 0. 84-inlet-diameter spacing. 

4.2  INLET-AIRPLANE TESTS 

4.2.1   Effect of Spike Position 

<f>)   The effect of spike position on both the inboard and outboard 
inlet performance at Mach numbers from 0. 85 to 2. 20 at an angle of 
attack of 5 deg is shown in Fig.   15.    The data,  presented at constant 
corrected airflows, were within ±2 lbm/sec of the previously defined 
nominal corrected airflow for the respective Mach numbers.    The data 
were used to select the spike positions for optimum inlet performance 
at the assumed cruise angle of attack of 5 deg.    The effect of second- 
cone deflection angle on inlet performance at Mach numbers of 0. 85 
and 1. 20 is also shown.    Collapsing the second-cone deflection angle 
from 15 to 10 deg, at the spike position for optimum inlet perform- 
ance, improved recovery approximately 0. 3 percent at M,,, = 0. 85 and 
0. 6 percent at M,,, = 1. 20.    At Mach numbers from 1. 75 to 2. 20 the 
spike position for optimum outboard inlet performance was at a 
slightly more extended position than that for the inboard inlet.    The 
discrepancy is believed to be caused by slightly different spike and 
cowl contours of the two inlets since the discrepancy also appeared 
during the isolated inlet phase of testing. 
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4.2.2 Effect of Spike Bleed Flow 

(0)   Limited data were obtained for determining the effect of spike 
bleed flow on inlet performance.    At Mach numbers of 0. 85 and 1. 20,-the 
spikes contained no perforations to bleed the boundary layer.   In general 
the spike bleed plugs were fully open at the supersonic Mach number 
conditions investigated.    However, the effect of spike bleed was investi- 
gated at M0 = 2. 20 at the assumed cruise angle of attack of 5 deg.    The 
data presented in Fig.   16 show that recovery was unaffected for spike 
bleed flow greater than approximately 2 percent of the inlet capture flow. 
Spike bleed mass-flow ratio above 0.02 increased recovery approximately 
2 percent at M,,, = 2. 20 at the cruise angle of attack of 5 deg. 

4.2.3 Effects of Angle of Attack and Sideslip 

(0)   The effects of angle of attack and sideslip on inlet performance, 
for previously defined corrected airflows at optimum spike settings,  are 
shown in Figs.   17 and 18,  respectively.    The inboard inlet performance 
was more sensitive to model attitude than was the outboard inlet. . At 
Mach numbers of 1. 75,  2.05,  and 2.20, the maximum recovery and 
minimum distortion occurred at angles of attack greater than the 5-deg 
cruise angle of attack.    To move the peak recovery points closer to the 
5-deg cruise angle of attack, the data indicate that the inlets should be 
pitched up to align the inlets to the local flow angularity.    As would be 
expected at positive angles of sideslip,  recovery decreased and distor- 
tion increased because the inlets were in the flow field wake generated 
by the fuselage. 

4.2.4 Optimum Inlet Performance 

{$)   Figure 19 shows a summary of the optimum inboard and out- 
board inlet performance for a 5-deg cruise angle of attack over the 
Mach number range investigated.    Optimum recovery varied from 0. 99 
at Ma = 0. 85 to 0. 88 at M,,, = 2. 20 while total-pressure distortion 
remained at or below 0. 1 through the Mach number range. 

(rf)   Also shown in Fig.   19 is the isolated inlet performance at the 
same corrected airflows and spike settings as were determined at the 
respective Mach numbers for the inlet-airplane phase of testing.    The 
increase in performance shown for the inlet-airplane configuration at 
Mach numbers greater than 1. 20 results from a decrease in the local 
Mach number ahead of the inlets which was generated by the weak 
oblique shock system of the wing-fuselage combination, thereby decreas- 
ing the total-pressure losses associated with the inlet shock system. 
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SECTION V 

CONCLUSIONS 

(U)   A summary of the significant test results of the wind tunnel 
investigation of a 1/8-scale AMSA inlet model in Tunnel 16T and 
Tunnel 16S is as follows: 

(JO   1.   The nonstaggered,  dual-isolated inlet configurations 
had no mutual inlet interaction effects at nominal 
corrected airflow at free-stream Mach number 2. 06. 

ffi)   2.   The outboard inlet performance was adversely 
affected by" the inboard inlet performance for the 
staggered,  dual-isolated inlet configuration at 
free-stream Mach number 2.06. 

Iß)   3.   Inboard inlet performance was more sensitive to 
airplane attitude than was the outboard inlet. 

If)   4.   Maximum inlet performance did not occur at pre- 
dicted airplane cruise attitude for the Mach number 
range from 1. 75 to 2. 20. 
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Fig. 18   Effect of Angle of Sideslip on Inlet Performance; a = 6.2 deg 
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TABLE I 

ACCURACY OF MEASUREMENTS 

Uncertainty 

Free-stream Mach number,  Ma 
Tunnel 16T ±0.006 
Tunnel 16S +0.010 

Free-stream total pressure,  pt ,   psf ±3.000 

Compressor-face total-pressure recovery, N2 ±0.004 

Compressor-face total-pressure distortion, D2 ±0.008 

Compressor-face mass-flow ratio,  mg/m^ ±0.010 

Spike bleed mass-flow ratio, ra^/mj ±0.001 

Simulated full-scale corrected weight flow, 
W^/ög, lbm/sec ±2.000 

Model total pressure, psf ±4. 000 

Model static pressure,  psf ±1. 500 

Ratio of distance spike tip extends forward of 
cowl lip to cowl radius, X/R ±0. 003 

Free-stream total temperature, T+ ,  °R ±5.000 

Model angle of attack, a, deg ±0. 150 

Model angle of sideslip, ß,  deg ±0. 150 
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